姓名 |
朱丽达 |
性别 |
女 |
|
职称 |
讲师 |
学位 |
博士 |
|
电话 |
邮箱 |
ldzhu@mail.hzau.edu.com |
||
工作单位 |
太阳集团成 政治面貌:群众 |
|||
研究方向 |
生物信息学,大数据,数据挖掘,机器学习 |
|||
教育经历 |
2008.9-2015.1: 武汉大学计算机学院,计算机科学与技术,博士 2006.9-2008.6: 挪威阿基德大学,ICT,硕士 2002.9-2006.6:武汉大学计算机学院,计算机科学与技术,本科 |
|||
工作经历 |
2015.1-2019.1:太阳成集团官网博士后 2009.1-2009.10:新加坡南洋理工大学CS,研究助理 |
|||
科研成果 |
本课题组长期招聘各级研究人员,有从事教学工作意向的人员,也可以和我联系。 近期论文 1. Quan Yuan#, Luo Zhi-Hui#, Yang Qing-Yong#, Li Jiang, Zhu Qiang, Liu Ye-Mao, Lv Bo-Min, Cui Ze-Jia, Qin Xuan, Xu Ying, Zhu Li-Da*, Zhang Hong-Yu*. Systems chemical genetics-based drug discovery: prioritizing agents targeting multiple/reliable disease-associated genes as drug candidates.2019. Frontiers in Genetics. 2. Quan Yuan#, Liu Meng-Yuan #, Liu Ye-Mao, Zhu Li-Da, Wu Yu-Shan, Luo Zhi-Hui, et al. (2018). Facilitating anti-cancer combinatorial drug discovery by targeting epistatic disease genes. Molecules, 23(4), 736 3. Wang Hui#, Wang Gang, Zhu Li-Da, et al. Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model[J]. Quantitative Biology, 2018, 6(4). 4. Yuan Jun#, Zhu Li-Da*, Zhu Fu-xi. Predicting potential Drug-Target Interactions with Multi-label learning and ensemble learning. International Conference on Intelligent Computing (ICIC2019), Accepted 5. Zhu Li-Da#, He Chang-Shou, Liu Ye-Mao, et al. A systems chemical biology approach to identify targets of antibacterial agents: A case study of Chelerythrine and Rhein, IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2015:1047-1056. 6. Zhu Li-Da#, Zhu Fuxi*. Identification association of drug-disease by using functional gene module for breast cancer[J]. Bmc Medical Genomics, 2015, 8(S2):1-8. 7. Zhu Li-Da#, Liu Juan*. Integration of a prognostic gene module with a drug sensitivity module to identify drugs that could be repurposed for breast cancer therapy. [J]. Computers in Biology & Medicine, 2015, 61(C):163. 8. Zhu Li-Da#, Liu Juan*, Liang Feng-Ji, et al. Predicting response to preoperative chemotherapy agents by identifying drug action on modeled microRNA regulation networks[J]. Plos One, 2014, 9(5):e98140. 9. Wang Wei, Liu J*, Xiong Yi,Zhu Li-Da, et al. Analysis and classification of DNA-binding sites in single-stranded and double-stranded DNA-binding proteins using protein information[J]. IET Systems Biology, 2014, 8(4):176. 10. Zhu Li-Da#, Li Juan*. Water Bioinformatics: An Association between Estrogen Degradation and 16S rRNA Motifs, International Conference on Bioinformatics and |
|||
专利 |
1.一种基于热扩散网络的药物发现方法及其应用,张红雨; 全源; 王晖; 朱丽达; 许璇; 杨庆勇; 黄清中国专利, CN201710917312.2 2.一种药物活性的预测方法及其应用,张红雨; 全源; 朱丽达; 李姜; 柳叶茂; 杨庆勇; 黄清,中国专利, CN201710769899.7 3.基于基因表达和药物靶标的药物活性预测与筛选方法,张红雨; 周雄辉; 朱丽达; 全源; 崔泽嘉; 杨庆勇,中国专利, CN201610361900.8 4.一种基于机器学习的药物活性预测方法,张红雨; 朱丽达; 罗志辉; 全源; 朱强; 杨庆勇,中国专利, CN201610067573.5 5.多靶标药物和/或药物组合的筛选方法,张红雨; 杨庆勇; 全源; 罗志辉; 朱丽达;中国专利, ZL201510288863.8 |
|||
专著 |
人工智能习题解析与实践(21世纪高等学校计算机专业实用规划教材)。清华出版社。朱福喜、朱丽达 编著。ISBN: 9787302519669 |
|||
备注 |